Date of Award

Fall 12-15-2017

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Chemistry

First Advisor

Ishrat M. Khan, Ph.D.

Second Advisor

Cass D. Parker, Ph.D.

Third Advisor

James Reed, Ph.D.

Abstract

In recent years, polymer-inorganic nanoparticle compositions have been a subject of considerable interest in order to achieve desired chemical, physical properties and mechanical properties. In this study a polymer nanocomposites have been prepared by incorporating silica nanoparticles (~20 nm) as fillers into poly(ethylene oxide) matrix. The composites of poly(ethylene oxide) and silica nanoparticles were prepared by solution blending. The product composites were powders. The thermal properties of the composites were investigated using the Differential Scanning Calorimetry. The Nuclear Magnetic Resonance (13C solid state, T), Atomic Force Microscopy, X-ray diffraction and Fourier Transform Infrared Spectroscopy were used to investigate the effect of the nanoparticles on the polymer matrix. The results suggest that the silica nanoparticles were reasonably well dispersed in the PEO 35K. The dispersion was accompanied by slightly reduced the crystallinity. However, with increasing the SiO2 nanoparticles the aggregation Phenomenon appears. Moreover, with increase in the MW of the PEO to 100K the dispersion of the nanoparticles decreased and aggregation phenomenon is observed even at lower of SiO2 contents.

Share

COinS