Date of Award

Summer 8-8-2018

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Chemistry

First Advisor

Ishrat Khan, Ph.D.

Second Advisor

Cass Parker, Ph.D.

Third Advisor

James Reed, Ph.D.

Abstract

In this study, highly ionic conductive solid polymer electrolytes have been prepared by blending high molecular weight polyethylene oxide (PEO: MW 35,000 and 100,000) and bis(trifluoromethane)sulfonamide lithium (LiTFSI) salt. The ionic conductivities were determined for several compositions of the blends at different temperatures. A maximum ionic conductivity of 9.45 x 10-6 S cm-1 at 25 °C has been obtained for the blends containing PEO-35,000/LiTFSI at an ethylene oxide to lithium salt ratio (EO/Li+) of 5, whereas a maximum ionic conductivity 7.7 x 10-6 S cm-1 at 25 °C was observed for the PEO-100,000/LiTFSI blend at EO/Li+ mole ratio of 5. For all the blends, increasing the temperature resulted in enhanced ionic conductivity. Furthermore, addition of tris(pentafluorophenyl)borane (TPFB) increased the conductivities at 25 oC. The overall conclusion of the study is that using LiTFSI and the TPFB in the blends results in ionic conductivities suitable for use in Li-air and/or Li-ion batteries.

Share

COinS