Date of Award

Fall 12-16-2016

Document Type


Degree Name

Master of Science (MS)



First Advisor

Swaraj S. Tayal, Ph.D.

Second Advisor

Xiao-Qian Wang, Ph.D.

Third Advisor

Alfred Z. Msezane, Ph.D.


Theoretical study of energy levels, oscillator strengths, transition probabilities, and lifetimes of Si III lines has been reported in this thesis. These atomic parameters are required for the interpretation of emission and absorption lines of Si III and for the modeling of astrophysical plasmas including Galactic High Velocity Clouds (HVCs), the Sun, and white dwarf stars. We used Hartree-Fock (HF) and Multiconfiguration Hartree-Fock (MCHF) methods in our calculations. We have considered 58 levels of the 3s2, 3s3p, 3p2, 3s3d, 3s4s, 3s4p, 3s4d, 3s4f, 3s5s, 3s5p, 3s5d, 3s6s, and 3s5f configurations. The relativistic corrections are included in Breit-Pauli approximation by using one-body Darwin, mass correction, spin-orbit operators, and two-body spin-other-orbit and spin-spin operators. The results have been compared with previous theoretical results and available experimental data, and generally a good agreement is found.