Date of Award

Summer 7-28-2015

Document Type


Degree Name

Doctor of Philosophy (PhD)



First Advisor

Ishrat Khan, Ph.D.

Second Advisor

Rajiv Berry, Ph.D.

Third Advisor

Michelle Gaines, Ph.D.


Substances that consist of nano-scale fillers dispersed in a polymer matrix are known as polymer-nanocomposites (PNCs). These materials are appealing since they have high potentials for applications, due to their mechanical, electrical, and thermo electrical properties. A common problem associated with PNCs is that the nano-fillers have a tendency to aggregate into clusters and form phase separated domains, which cause the desired properties of the system to either diminish or vanish all together. Hairy nanoparticles (HNPs) can avoid the issue of agglomeration that is commonly encountered by conventional PNCs. When polymer chains are grafted to a nanoparticle, and the coverage is high, the nanoparticles have decreased inter-particle interactions which allows for enhanced dispersion and mixing into a polymer matrix. By tailoring the architecture (functionalization of polymer chains, degree of polymerization, grafting density) of HNPs, it is possible to control the final properties of the system. An in depth study was carried out to investigate the effects of hairy-nanoparticle architecture on the resulting properties of the material itself. Atom transfer radical polymerization and living anionic polymerization were used to synthesize the polymer chains, of the HNP systems, while various instrumental methods including differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were utilized to study the physical ageing affects and self-assembly of these systems.


Included in

Chemistry Commons