Lapatinib and Neratinib: Using combination drug therapy to advance the effect of the treatment of HER2 Positive Breast Cancer

Kendra Hearn
El Centro de Investigacion del Cancer- Campus Miguel de Unamuno, Salamanca, Spain

Atanasio Pandiella
El Centro de Investigacion del Cancer- Campus Miguel de Unamuno, Salamanca, Spain

Follow this and additional works at: http://digitalcommons.auctr.edu/scgstempst

Part of the [Medicine and Health Sciences Commons](http://digitalcommons.auctr.edu/scgstempst)

Recommended Citation
http://digitalcommons.auctr.edu/scgstempst/17

This Conference Proceeding is brought to you for free and open access by the Enhancing Global Research and Education in STEM at Spelman College (G-STEM) at DigitalCommons@Robert W. Woodruff Library, Atlanta University Center. It has been accepted for inclusion in G-STEM Posters by an authorized administrator of DigitalCommons@Robert W. Woodruff Library, Atlanta University Center. For more information, please contact cwiseman@auctr.edu.
INTRODUCTION

There are four receptor tyrosine kinases (RTKs) in the ‘HER’ or ErbB receptor family: EGFR, HER2, HER3, and HER4. This family of receptors is involved in many cellular functions including growth, division and apoptosis. The regulation of ErbB can occur in subregions of the membrane and are vital to the continued health of the cell. These RTKs are known for their involvement in many forms of cancer. The study of HER2 positive breast cancer accounts for approximately 20% of breast cancers, and has been noted as one of the most aggressive forms of the disease. In this study, three different pharmaceutical agents, trastuzumab (monoclonal antibody), and intracellular kinase inhibitors, lapatinib and neratinib are used in various concentrations and combinations to determine optimal efficacy in two HER2 positive cell lines.

RESULTS

Binding Activity

In SKBR3, the sample containing the combination therapy of lapatinib and Herceptin had a cell death percentage of 16.23% neratinib and Herceptin had the highest cell death percentage at 34.94%.

In line BT474, both combination 24.95% cell death rate in the combination of neratinib and Herceptin and a 38.83% cell death rate of lapatinib and Herceptin.

Neratinib

For both SKBR3 and BT474, it was determined that the most effective form of treatment was the combination of neratinib and Herceptin. Even though in SKBR3, the combination of lapatinib and Herceptin had a lower percentage of live cells in line BT474, the neratinib-Herceptin combination has proved to be overall superior when compared in trials.

This combination of drugs should be further studied to determine a concentration effective and safe for the use of treatment of HER2 positive breast cancer. From these results another conclusive finding could be that the use of tyrosine kinase inhibitors are not as effective as monoclonal antibodies when they are not used in combination.

FUTURE WORK

If possible, the repetition of this method would further confirm the results shown. Also the ability to work with a bigger data set would give more accurate results.

ACKNOWLEDGEMENTS

This research was based upon work supported by the National Science Foundation under Grant # HRD-0963629 (G-STEM). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Special thanks are given to Dr. Atanasio Pandiella, Dr. Mark Lee, Dr. Elena Vela Sarríon, and Stela Aláverez.

REFERENCES

Gerbin, C. S. (2010) Regulation of ERBB Receptors... Nature Education 9(3) 36