Summer 2013

Tumor Necrosis Factor and Tumor Necrosis Factor Receptors in Coelacanth genes

Kierra Brown
Leyete Winfield
Alan Christoffels
Barbara Picone

School of Chemistry, Spelman College, Atlanta, GA

Follow this and additional works at: http://digitalcommons.auctr.edu/scgstempst

Part of the Life Sciences Commons

Recommended Citation
Brown, Kierra; Winfield, Leyete; Christoffels, Alan; and Picone, Barbara, "Tumor Necrosis Factor and Tumor Necrosis Factor Receptors in Coelacanth genes" (2013). G-STEM Posters. 12.
http://digitalcommons.auctr.edu/scgstempst/12

This Conference Proceeding is brought to you for free and open access by the Enhancing Global Research and Education in STEM at Spelman College (G-STEM) at DigitalCommons@Robert W. Woodruff Library, Atlanta University Center. It has been accepted for inclusion in G-STEM Posters by an authorized administrator of DigitalCommons@Robert W. Woodruff Library, Atlanta University Center. For more information, please contact cwiseman@auctr.edu.
Tumor necrosis factor (TNF) and its receptors play a fundamental role in both pro-inflammatory and anti-inflammatory processes. TNF is a pro-inflammatory cytokine that binds to its receptors, triggering a variety of cellular responses. Understanding the evolution and function of TNF in different species is crucial for comprehending the role of TNF in human and animal health.

Methods

A computer database, ENSEMBL, browser provides a variety of genomes with complete explanations using an automated genome annotation system. Using bioinformatics techniques to analyze protein structures of the superfamily found in this study were Coelacanth, Fugu, and Homo sapiens. A computer database, ENSEMBL, was used to collect data for the superfamily._fig.1 shows the different TNF ligand and TNF receptor.

Results

Conclusion

Acknowledgements

References

I would like to acknowledge the following for their help in making this research possible: Dr. Leyete Winfield, Prof. Alan Christoffels, Dr. Barbara Picone, Mrs. Karen Clay.