




 

 

Figure 16: Immuno-cytochemical analysis of ID4 expres

mediated knockdown of EZH2 in DU145 cells (x200 magnification). ID4 expression is in 

red and the nuclei in Blue (DAPI). C.1 and C.4 are merged images of Blue (Nuclei, C.2 

and C.5) and Red (ID4, C.3 and C.6). C.1, C.2 and C.3 are DU145

non-specific siRNA (DU145+NS). Panels C.4, C.5 and C.6 are DU145 cells transfected 

with EZH2 siRNA (DU145+siEZH2). Representative images are shown.

 

 

 

 

 

 

cytochemical analysis of ID4 expression following siRNA2 

mediated knockdown of EZH2 in DU145 cells (x200 magnification). ID4 expression is in 

red and the nuclei in Blue (DAPI). C.1 and C.4 are merged images of Blue (Nuclei, C.2 

and C.5) and Red (ID4, C.3 and C.6). C.1, C.2 and C.3 are DU145 cells transfected with 

specific siRNA (DU145+NS). Panels C.4, C.5 and C.6 are DU145 cells transfected 

with EZH2 siRNA (DU145+siEZH2). Representative images are shown.
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sion following siRNA2 

mediated knockdown of EZH2 in DU145 cells (x200 magnification). ID4 expression is in 

red and the nuclei in Blue (DAPI). C.1 and C.4 are merged images of Blue (Nuclei, C.2 

cells transfected with 

specific siRNA (DU145+NS). Panels C.4, C.5 and C.6 are DU145 cells transfected 

with EZH2 siRNA (DU145+siEZH2). Representative images are shown. 



78 

 

 

 

 

 

Figure 17: Association between EZH2 and DNMT1 on ID4 promoter.  A: Enrichment 

of EZH2, H3K27me3, H3Ac and DNMT1 on ID4 and KLF2 promoters following EZH2 

knockdown in DU145 cells. The data is expressed (mean+SEM, n=3 in triplicate) fold 

change of % input as compared to DU145 cells transfected with non-specific EZH2 

siRNA. B: Western blot analysis of DNMT1 expression in DU145 cells with non-

silencing siRNA or with EZH2 si-RNA2 (siEZH2). Representative of 3 blots is shown. 

C: Methylation specific PCR (MSP) on ID4 promoter following knockdown of EZH2 in 

DU145 cells. A band in “M” lane represents methylation of ID4 promoter where as a 

band in “U” lane represents un-methylated promoter. Representative results are shown. 
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EZH2 physically interacts with and recruits DNA methyl-transferases DNMT1, 

3A and 3B to promote methylation and  establish stable repressive chromatin structures 

(40), suggesting that histone modifications acts upstream  of methylation and/or its 

initiation.  Previous studies from our laboratory have shown that treatment of DU145 

cells with 5-azacitidine leads to re-expression of ID4 (2). 5-azacitidine promotes 

proteosomal degradation specifically of DNMT1 (266) suggesting that ID4 promoter 

hyper-methylation in DU145 cells is in part mediated by DNMT1. Based on these 

studies, we next investigated whether DNMT1 is also recruited on ID4 promoter in an 

EZH2 dependent manner. Results from chromatin immuno precipitation experiments 

suggested significantly decreased DNMT1 enrichment on ID4 promoter in 

DU145+siEZH2 as compared to DU145+siNS cells (Figure. 17B). Surprisingly, 

enrichment of DNMT1 on KLF2 promoter was not significantly different between 

DU145+siEZH2 and DU145+siNS cells. KLF2 promoter is also an EZH2 target gene in 

many cancers (248) and recently shown to be hyper-methylated by DNMT1 in 

endothelial cells (267). The reduction in DNMT1 enrichment on ID4 promoter could be 

due to its decreased expression following EZH2 knockdown.  In order to confirm this, we 

investigated the expression of DNMT1 in DU145+siEZH2 and DU145+siNS cells 

(Figure. 17B). Surprisingly, the DNMT1 levels were similar between DU145+siEZH2 

and DU145+siNS cells. These results suggested that the reduced DNMT1 recruitment on 

ID4 promoter was due to decreased EZH2 recruitment and not due to decreased 

expression of DNMT1. Next, we investigated whether increased ID4 expression in 

DU145+siEZH2 (Figure.15A and 16) was due to decreased ID4 promoter hyper-
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methylation. The methylation specific PCR on ID4 promoter using bisulfite treated DNA 

from DU145+siEZH2 cells reveled decreased promoter methylation as compared to 

DU145+siNS (Figure. 17C). Together, these results suggested that EZH2 silencing leads 

to decreased DNMT1 recruitment resulting in ID4 promoter hypo-methylation. 

4.2.5 Knockdown of EZH2 results in Hypo-methylation of ID4 promoter 

Finally, direct bisulfite sequencing was performed on DU145+siNS, 

DU145+siEZH2 and LNCaP cells. The sequence of the region amplified MSP primers 

(the sequencing primers flanked the MSP region shown in Figure. 8B) confirmed, as 

expected that the CpG islands in LNCaP cells were hypo-methylated (conversion of “C” 

to “T” by bisulfite reaction), but were hyper-methylated in DU145+siNS (no conversion 

of “C” due to methylation). Partial conversion of “C” to ”T” was observed in 

DU145+siEZH2 cells.  Sequence alignments allowed us identify critical CpG islands 

(indicated by arrow heads (Figure. 18) that were hypo-methylated in DU145+siEZH2 

cells resulting in ID4 expression (Figure. 16). These results led us to conclude that EZH2 

recruitment promotes ID4 hyper-methylation through a complex process involving 

H3K27me3 and DNMT1. 

  



 

Figure 18: Bisulfite sequence of MSP/ USP region of ID4 promoter.  

The Genomic sequence is indicated at the top (

site).  BSP: The predicted sequence after bisulfite conversion. The consensus sequences 

from LNCaP, DU145+siNS (DU+siNS), DU145+siEZH2 (DU+siEZ) are represented.  

The methylated Cytosine (C, red) and un

(T, Green) after bisulfite conversion are indicated. Polymorphism was observed at CpG 

islands in DU145+siEZH2 (C/T) hence two sequences are displayed.  The read from two 

 

igure 18: Bisulfite sequence of MSP/ USP region of ID4 promoter.  

The Genomic sequence is indicated at the top (-192 to -35 bp from transcriptional start 

site).  BSP: The predicted sequence after bisulfite conversion. The consensus sequences 

from LNCaP, DU145+siNS (DU+siNS), DU145+siEZH2 (DU+siEZ) are represented.  

ethylated Cytosine (C, red) and un-methylated Cytosine converted to Thymidine 

(T, Green) after bisulfite conversion are indicated. Polymorphism was observed at CpG 

islands in DU145+siEZH2 (C/T) hence two sequences are displayed.  The read from two 
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35 bp from transcriptional start 

site).  BSP: The predicted sequence after bisulfite conversion. The consensus sequences 

from LNCaP, DU145+siNS (DU+siNS), DU145+siEZH2 (DU+siEZ) are represented.  

methylated Cytosine converted to Thymidine 

(T, Green) after bisulfite conversion are indicated. Polymorphism was observed at CpG 

islands in DU145+siEZH2 (C/T) hence two sequences are displayed.  The read from two 
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representative sequences is shown. The arrow heads at the bottom indicates possible site 

of hypo-methylation on ID4 promoter in DU145+siEZH2 cells.
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CHAPTER V 

                                                 DISCUSSION 

5.1 ID4 is epigenetically silenced due to promoter hyper-methylation 

In this report we demonstrate that ID4 expression is attenuated in prostate cancer 

due to promoter hyper-methylation. This study strengthens previous reports (2, 48, 154) 

which provided direct evidence that ID4 acts as a tumor suppressor in prostate cancer. 

The tumor suppressor role of ID4 appears to be unique as compared to other members of 

the ID gene family (ID1, ID2 and ID3) that may act as oncogenes or co-operating 

oncogenes in many cancers (96, 101, 109).  

A recent report suggested a positive association between ID4 expression and 

prostate cancer metastasis (141). On the contrary, we provide multiple lines of evidence 

that demonstrate decreased ID4 expression in prostate cancer. First, in LNCaP cell line 

based prostate cancer progression model ID4 transcript is decreased from androgen 

dependent LNCaP cells to androgen independent LNCaP-C81 cells, with an intermediate 

expression observed in LNCaP-C-33 cells. Second, ID4 protein expression is 

significantly decreased and, in most cases, undetectable in advanced stages of prostate 

cancer as detected by a highly specific rabbit monoclonal antibody. Moreover, multiple 

microarray studies ((261) and summarized in (2)) on clinically well-defined prostate 

cancer samples and analysis of a subset of clinical samples in our study also 

demonstrated decreased ID4 expression at the transcript level. Thus, decreased ID4
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expression in prostate cancer is observed at both transcript and protein level. At the 

mechanistic level, the transcriptional inactivation of ID4 is associated with aberrant 

promoter methylation in prostate cancer cell lines and tissue samples as demonstrated in 

this study and confirmed by others (17). Our results are, therefore, consistent with the 

epigenetic silencing of ID4 due to promoter hyper-methylation in cancers: T-/natural 

killer acute lymphoblastic leukemia (19), gastric (29), breast (133) colorectal (134) and 

prostate cancer (17). 

The silencing of ID4 in cancers raises an important question: what is the normal 

physiological function of ID4 in at least those tissues which upon transformation leads to 

its loss of expression such as the prostate? Studies conducted by Carey et al. (2) provided 

some answers at the mechanistic level: 1) androgens up-regulate ID4 expression in 

normal prostate epithelial cell (PrEC) and 2) ectopic ID4 expression in androgen receptor 

negative DU145 cells leads to increased E-cadherin expression and decreased cell 

proliferation due to an S-phase arrest, increased expression of cyclin dependent kinase 

inhibitors p21 and p27, and most importantly, restoration of androgen receptor 

expression. The increase in the transcript of p27, p21, E-cadherin and androgen receptor 

in DU145 cells suggests that ID4 over-expression modifies intracellular transcriptional 

pathways possibly through complex protein-protein interactions leading to restoration of 

transcriptional networks that are in general tumor-suppressive. Induction of ID4 by 

androgens in normal cells and restoration of androgen receptor in DU145 cells also 

suggests a potential feedback loop between AR and ID4. Perhaps one of the mechanism 
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by which AR becomes oncogenic could be due to its inability to trans-activate tumor 

suppressors such as ID4 due to promoter hyper-methylation.  

The HLH domain between ID4 and its other family members (ID1, ID2 and ID3) 

is highly conserved, thus, supporting its role as a negative regulator of bHLH 

transcription factors (268). The tumor-promoting properties of ID1, ID2 and ID3 are at 

least partially shared by ID4 also: ID4 has been shown to promote neoplastic 

transformation/growth. Increased ID4 expression is observed in acute lymphoblastic 

leukemia due to a t(6;14)(p22;q32) translocation (135). ID4 expression is also associated 

with proliferation and invasiveness (138) in rat mammary gland carcinoma. Moreover, in 

breast cancer cells, ID4 and the tumor suppressor BRCA1 exist in a negative feedback 

loop (144, 145, 269). But studies have also demonstrated epigenetic silencing of ID4 in 

breast cancer (132, 133). Thus, even in cancers arising from the same organ such as the 

breast, ID4 may act as both tumor suppressor and tumor promoter (132, 133, 138, 144, 

145, 269). Evidence suggests that ID4 may share some functions with its family 

members, but emerging data supports the role of ID4 as a tumor suppressor. We speculate 

that ID4 may have unique bHLH or non-bHLH interaction partners that could largely 

define its tumor-promoting versus tumor suppressor functions. Support for this 

mechanism is based on the evidence that interactions of ID2 with Rb (270, 271) and 

polycystins (272), ID1 and ID3 with Ets (273) transcription factors largely contribute to 

their oncogenic potential by releasing cell cycle blockade at multiple levels (274). 

Although all these mechanism are largely tumor-promoting, but similar tumor-

suppressive interactions that are unique to ID4 could exist that remain to be investigated.  
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5. 2 Epigenetic silencing of ID4 due to association between DNA methylation and 

histone modification 

The data presented here supports an EZH2 dependent epigenetic silencing of ID4 in 

prostate cancer. This conclusion is particularly compelling when the experimental data 

(cell line and clinical studies) is compared to the meta-analysis of ID4 promoter (UCSC 

genome browser) and remarkable mutually exclusive expression profile of EZH2 and ID4 

in prostate cancer (TCGA datasets and experimental evidence). A number of studies 

support the role of EZH2 as an oncogene in prostate cancer that is typically associated 

with increased risk of metastasis and recurrence (42, 43, 275). Knockdown of EZH2 in 

prostate cancer cell lines results in decreased cellular growth and invasion (265, 276-

278). EZH2 mediated transcriptional repression of putative tumor suppressors such as E-

cadherin (279) via increased H3K27Me3  is dependent on SET domain that in addition to 

methyl transferase activity also requires histone de-acetylase activity, possibly through 

recruitment of  HDAC2 by EZH2,  itself a component of PRC2 complex (280). Such a 

co-operative histone modification is clearly observed on ID4 promoter where increased 

EZH2 dependent histone methylation is associated with decreased histone acetylation, 

further contributing to the repressive histone marks.  

ID4 expression is also tightly controlled by epigenetic mechanisms during 

oligodendrocyte differentiation by PRMT5, a type II protein arginine methyltransferase.   

PRMT5 associates with ID4 CpG islands and is required for maintaining its methylation 

status and subsequent gene silencing in differentiating oligodendrocyte (148).  



87 

 

 

In prostate cancer cells PRMT5 expression is primarily cytoplasmic and promotes 

growth. In contrast, PRMT5 is nuclear in benign prostate epithelial cells where it inhibits 

growth (281). Thus, PRMT5 localization (predominantly cytoplasmic) in prostate cancer 

does not correspond with its role in ID4 methylation or association with CpG islands, 

which as one would expect to be in the nucleus. However, direct evidence demonstrating 

the ID4 gene expression is independent of PRMT5 in prostate cancer remains to be 

investigated. Re-expression of ID4 by silencing EZH2 suggests that EZH2 dependent 

H3K27me3 could be an early event in establishing this histone code that may recruit 

DNA methyl- transferases to promote DNA methylation. We and others have 

demonstrated that inhibition of DNMT1 by 5- Azacitidine treatment also promotes ID4 

expression in DU145 cells (2, 17), clearly suggesting that these two processes are inter-

related. Indeed, studies have shown that treatment of cells with 5-Aza results in removal 

of H3K27me3 marks without altering the expression of EZH2 or other histone methyl 

transferases (282). Furthermore, we observed that methyl transferases such as EZH2 were 

present in the same region as DNMT1 on ID4 promoter, possibly in the same protein 

complex (40, 283, 284). Thus, interfering with either EZH2 (siRNA) or DNMT1 (5-Aza) 

could de-stabilize the epigenetic mark resulting in increased ID4 expression. Thus, 

increased EZH2 expression and its subsequent recruitment appears to be the primary 

mechanism involved in epigenetic silencing of ID4 in prostate cancer. The role of other 

co-operating proteins within PRC1 and PRC2 cannot be ruled out as their expression/ 

recruitment could alter ID4 methylation/ histone modifications. Lack of a significant 

change in the expression of DNMT1 following EZH2 silencing further suggests that 
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recruitment of protein complexes takes precedence over expression in epigenetic 

modifications at least in context of ID4.  This is partly reflected in the TCGA expression 

profile where the expression of other PRC1/2 complex proteins does not change to the 

extent as compared to EZH2 in normal prostate and prostate cancer. Evidence that 

assembly and not expression of PRC1/2 complex proteins is dependent on recruitment 

EZH2 as the initial step is also apparent from studies indicating that the expression of 

BM1-1, SIRT-1, DNMT1 and DNMT3b is not associated with prostate cancer (285). 

Whether the EZH2-DNMT mechanism is specific to prostate cancer or a more general 

pro-cancer pathway involved in ID4 gene silencing remains to be investigated. It is also 

possible that ID4 gene regulation may be distinct in cancer cells versus cell undergoing 

proliferation/ differentiation that require stage specific accessibility to ID4 transcriptional 

regulators such as those involving sp1/ bHLH/ hormones through alternate mechanism, 

example PRMT5 cellular localization.  
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CHAPTER VI 

CONCLUSION 

 

Epigenetic alterations have now emerged as major contributors to prostate cancer 

disease imitation and progression. The detailed investigation of the molecular 

mechanisms involved in regulating these epigenetic changes will remain the major focus 

of current and future research. Our results demonstrate that ID4 expression is decreased 

in prostate cancer due to promoter hyper-methylation. Our results, in general, agree with 

the majority of results that support the role of ID4 as a tumor suppressor due to epigenetic 

inactivation in other cancers. The EZH2-DNMT dependent mechanism, at least in 

prostate cancer, suggest that targeting this pathway through specific inhibitors resulting in 

general epigenetic re-programming, including up-regulation of ID4, could be a strong 

therapeutic strategy. Previous studies have shown that ectopic ID4 expression alone 

results in cell cycle arrest (2), induction of apoptosis and senescence (286), activation of 

p53 (154) and increased sensitivity to chemo-therapeutics (286). Thus, strategies that can 

either specifically re-program ID4 promoter or target ID4 dependent downstream 

pathways are strong therapeutic approaches that needs to be explored. Contrary to these 

observations, studies have also demonstrated pro-tumor function of ID4 that is consistent 

with its other family members ID1, ID2 and ID3. In this regard, studies from breast 

cancer are particularly interesting that demonstrate both pro- and anti-tumor function of  
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ID4. We speculate that these opposing roles of ID4, sometimes in the cancers originating 

from the same tissue, could be due to specific ID4 interactions that are pro- or anti-tumor. 
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