2017

Electron impact excitation of O III

Swaraj S. Tayal
Clark Atlanta University

Oleg Zatsarinny
Drake University

Follow this and additional works at: http://digitalcommons.auctr.edu/caupubs

Part of the Physics Commons

Recommended Citation
Tayal, Swaraj S. and Zatsarinny, Oleg, "Electron impact excitation of O III" (2017). Clark Atlanta University Faculty Publications. 57.
http://digitalcommons.auctr.edu/caupubs/57

This Article is brought to you for free and open access by the Clark Atlanta University at DigitalCommons@Robert W. Woodruff Library, Atlanta University Center. It has been accepted for inclusion in Clark Atlanta University Faculty Publications by an authorized administrator of DigitalCommons@Robert W. Woodruff Library, Atlanta University Center. For more information, please contact cwiseman@auctr.edu.
Electron impact excitation of O III

To cite this article: S. S. Tayal and O. Zatsarinny 2017 J. Phys.: Conf. Ser. 875 052002

View the article online for updates and enhancements.
Electron impact excitation of O III

S. S. Tayal* 1 and O. Zatsarinny† 2

* Department of Physics, Clark Atlanta University, Atlanta, GA 30314, USA
† Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA

Synopsis

The B-spline Breit-Pauli R-matrix method has been used to calculate electron excitation collision strengths for a wide range of transitions between the first 220 fine-structure levels of O III. The calculation includes levels of the $2s^22p^2$, $2s2p3$, $2s2p3l$, $2s2p4l$ and $2s2p3l$ configurations. The present work considerably improves the existing calculations for oscillator strengths and collision strengths of O III.

Accurate transition rates and electron collision excitation rates of O III are important for the analysis and diagnostics of a wide range of astrophysical spectra. Electron scattering from O III has been performed by using highly accurate target wave functions and by including fine-structure effects in the close-coupling expansions directly. The present calculations have been carried out using the B-spline Breit-Pauli R-matrix (BSR) method [1]. The multi-configuration Hartree-Fock method in combination with B-spline expansions is employed for accurate representation of the target wave functions. This allows us to optimize the atomic wave functions for different states independently, resulting in a more accurate target description than those used in previous collision calculations.

Figure 1 shows collision strengths of the fine-structure $2s^22p^2 (3P_0-3P_1, 3P_1-3P_2)$ transitions in O III. High resolution at near-threshold energies is necessary for accuracy in rate coefficients at low energies. We will present detail comparison with available calculations. Generally, all recent R-matrix calculations [2-4] agree to within 10% for the thermally averaged collision strengths for the forbidden transitions among the five lowest levels of the ground $2s^22p^2$ configuration. An exception is for the transitions from the lowest three $3P_J$ levels to the $1S_0$ level. Here our results support the most recent calculation by Story et al [4]. Note also that the calculations Palay et al [3] show intensive resonance structure at electron energies above 3 Ry not supported by the present calculations.

For higher lying states the agreement is more diverse. The comparison of effective collision strengths for a set of temperatures is presented in figure 2 where the ratios of our results with other calculations [2] are shown. About 80% of transitions to excited states are within 30%, though for some weak transitions the rate coefficients differ by several factors. The present calculations are the direct Breit-Pauli calculations whereas the results in the works of Aggarwal and Keenan [2] and Storey et al [4] obtained from nonrelativistic LS calculation using the intermediate coupling frame transformation.

![Figure 1. Collision strengths for the $2s^22p^2 3P_0$ - $3P_1$ and $3P_1$ - $3P_2$ fine-structure transitions in O III.](image)

![Figure 2. Comparison of effective collision strengths in O III with other calculations. The ratios between the R-matrix calculation [2] and the present results are shown.](image)

This work was supported by NASA.

References

1 E-mail: staval@cau.edu
2 E-mail: oleg.zatsarinny@drake.edu