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We investigate the mathematical properties of solutions to the differential

equation

-+ x 1/3 = C’,

where 5 indicates the second-derivative with respect to t. First, we demonstrate that all

the solutions are periodic and then calculate an exact formula for the period. These two

properties are derived from the behavior of the trajectories for this system in the (x,y)

phase-space. where y = = . We then use the methods of harmonic balance and

iteration to determine approximations to both the periodic solutions and the

corresponding periods. Our measure of the accuracy of these solutions is to use the

concept of percentage-error. On this basis, we find that in general the harmonic balance

methods produce better analytical approximations than those given by the iteration

methods. Generalizations of our results to related research problems are given.
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CHAPTER 1
INTRODUCTION

The linear harmonic oscillator equation provides a mathematical approximation for the

modeling of a broad range ofphenomena in the natural and engineering sciences [1, 2, 3,4].

This second-order differential equation is

.1 —F- :i: = 0, (1.1)

where the following notation is used:

= independent variable,

dependent variable,

:1: = first-derivative with respect to t,

I = second-derivative with respect to t.

For the initial conditions (IC)

A, i:(0) 0, (1.2)

the solution to Eq. (1.1) is

x(t) Acost, (1.3)

and it follows that all solutions are periodic with period 27r.

The linear harmonic oscillator equation can be generalized to the form

(1.4)

where the function f(x) has the properties:

1



2

i) /(n) = U,

ii) f(.i) =

iii) .i/(.i) is monotonic increasing.

Under these conditions, all of the solutions to Eq. (1.4) are periodic [4].

If Eq. (1.4) can be rewritten in the form

+ :i: + F(:r) = 0, (1.5)

where C is a positive parameter, then it is called a nonlinear perturbed oscillator differential

equation. For an arbitrary F(:r), Eq. (1.5) cannot be solved in terms of a finite number of

elementary functions [5]. However, for small values of C, i.e.,

(1.6)

approximations to both the period and the periodic solutions may be calculated using tech

niques from the general theory of perturbations [4, 6, 7, 8, 9]. Since none of these methods

are applicable to the differential equation we have investigated, no further discussion on

this topic is required.

1.1 Research Problem

This dissertation provides a summary of our investigations on the differential equation

+ = 0. (1.1.1)

Inspection of this equation shows that it is a second-order, nonlinear ordinary differential

equation (ODE). Further, this equation has no limiting form that corresponds to the har

monic oscillator differential equation

.1 + i 0.
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This fact implies that none of the standard methods can be applied to calculate approxi

mations to the periodic solutions of Eq. (1.1.1). We will name Eq. (1.1.1) the cube-root

oscillator.

The primary objective of our research was to answer the following questions and/or

resolve certain related issues:

i) What are the general properties of the solutions to the cube-root differential equation?

ii) Can we prove that all solutions are periodic?

iii) Can the exact period of the periodic solutions (if they exist) be calculated?

iv) What calculational methods can be applied to the cube-root equation to determine

analytical approximations to its periodic solutions?

v) Can a quantitative measure be formulated to assess the accuracy of the approximate

solutions?

The general analysis and methodology used in this work is based on the prior research

of Mickens [10, 11, 12, 13, 14]. It should also be noted that part of my work has appeared

in an absfract [15] and one peer-reviewed publication [16].

1.2 Brief History of Fractional-Power Nonlinearities

The 2001 publication of Mickens [12] initiated the systematic study of nonlinear oscillators

with fractional-power nonlinearities. These second-order differential equations take the

form

(1.2.1)

where rn is a positive integer, i.e., ni 1, 2, 3.... A generalization of this equation is

2+1

r+3’ 0, (1.2.2)
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where ii iii and (?i, ii,) are now required to be non-negative integers. Note that for the

cube-root equation

1 + = U,

we have ii = 0 and ii, = 1.

A further generalization was made by Gottlieb [17] in his study of the differential equa

tion

1 + :iiPsgn(:r) = 0, (1.2.3)

with

0<p<l, (1.2.4)

where sgn(.i) is defined to be

+1 .1> ,

sgn(:z’) = 0. :i = 0,

(—1, .i;<0.

However, a detailed examination of Eq. (1.2.3) shows that this type of equation is valid for

all p > 0. However, Gottlieb’s work is of general interest since he did an analysis of all

cases for which p takes rational values.

1.3 Outline of Presentation

In Chapter 2, we define and discuss concepts and calculational techniques that were used to

analyze the cube-root differential equation. In particular, we introduce the idea of a “truly

nonlinear (TNL)” oscillator equation and demonstrate that the cube-root equation belongs

to this class of second-order, nonlinear differential equations. Other topics included in this

chapter are the definition of a periodic function, odd-parity systems, and the elements of

a phase-space analysis. We also present the basic methodology of approximation theory
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and use it to formulate the methods of harmonic balance and iterations. Finally, for com

pleteness, we state several important trigonometric relations needed for the calculations

and give a brief overview on the technique for solving second-order linear, inhomogeneous

differential equations.

Chapter 3 contains details of our mathematical work. We first prove that all solutions

of the cube-root differential equation are periodic and then use standard techniques to de

termine the exact value of the period. Next, we use two powerful methods to calculate

approximations to the periodic solutions. Six different calculations are done.

The last chapter contains a summary of all results, presents a comparative analysis of

the six solutions, and gives a brief discussion on how my particular research topics may be

generalized.



CHAPTER 2
BACKGROUND INFORMATION

This chapter provides brief introductions and summaries of needed mathematical concepts

and techniques required to carry out and analyze the calculations presented in Chapter 3.

Further details regarding these topics are given in the indicated references.

2.1 Truly Nonlinear Oscillators

Consider a function g(i), having the property

— -g(:r;). (2.1.1)

This function is defined to be a “truly nonlinear” (TNL) function at . = 0 if either of the

following two conditions hold:

i) g(0) 0 and cig(0)/dt = 0.

ii) Either g(0) or dg(0)/ci do not exist.

Particular examples of TNL functions are

gi(x) = x3, g2(x) =

For g(x), we haveg1(0) = 0 and dgi(0)/dx = 0, while for g2(:z), we have

g2(0) = o. d92(i) =

= undefined.
dx x=O 3 \I x=O

Therefore, both 9i (x) andg2(x) are TNL functions.

6
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A third, more interesting example is

- ;1 +

Note that since

g:(O) = 0, = [i + () -4] undefined,

g:1(’) is also a TNL function.

The second-order, nonlinear differential equation

i + gr) = 0

is a TNL equation if g(.i) is a TNL function. Therefore,

: + :i’ 0,

Y: + x + :1; = 0,

1
:1 + —

= 0,

are all TNL differential equations. Further, the equation studied in our work,

(2.1.2)

is a TNL differential equation.

2.2 Odd-Parity Differential Equations

The general secondorder, differential equation can be written as

F(x,±,?i) = 0. (2.2.1)
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Under the replacement .r —* — .r, we have

—* —:r, . —* —:.

If

F(—.i, —i, —I’) —F(i, :1’, .1), (2.2.2)

then the differential equation is said to be an odd-parity equation.

The cube-root differential equation

.1 + =

is an odd-parity equation since

F(:r, :1, 1) ; + = 0,

and for i —÷ —:i, we find

, .1/3 , (.)/3

The result in the last equation is a consequence of the fact that (_1)1/3 has a real root equal

to (—1) [18].

2.3 Periodic Functions

Let .1(t) be defined on the interval, —oc < t < cc. Assume that a positive, fixed constant

T exists such that for any t

f(t + T) = f(t). (2.3.1)

This value of T is called a period of the function f(t).

Let n be an integer, then it follows from this definition that

f(t + nT) = f(t).
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The smallest value ofT for which Eq. (2.3.1) holds is called the fundamental period for

.1(1).

In general, periodic functions have the following properties [19, 20]:

i) Let 1(1) be a periodic function, with period T, then (/(1), where ( is an arbitrary

constant, is also a periodic function with period T.

ii) Let / (/) and /(I) be periodic functions of period T, then (f (I) +(2f1(t), where

(j and are arbitrary constants, is a periodic function with period T.

iii) Let [(i) be an integrable function with period T, then for any real constant c,

r7

J /(l)dl
= / [(i)dt.

U

For many applications, the period is not the relevant quantity needed to analyze the

periodic behavior of the function f(’). The new quantity usually introduced is the angular

frequency. It is denoted by Q and related to the period by the formula

27r
Q = -f-. (2.3.2)

Therefore, a knowledge of either one allows the calculation of the other.

2.4 Fourier Series

The research presented in this dissertation is concerned with the periodic solutions of the

TNL differential equation

• + 0, (2.4.1)

subject to the initial conditions (IC)

i(0) = A. :i(O) = 0. (2.4.2)
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It follows from the general theory of ordinary differential equations (ODE) that the solu

tions ;i(/) have the following properties [21, 22]:

i) The solution, .i(/), and its first derivative, .(/), are continuous on the closed interval,

0 < I <T, where T is the period.

ii) The period is a function of the IC, .i(0) = A.

iii) With the IC’s, given by Eq. (2.4.2), the solution :i(I) is an even function of t, i.e.,

1(1) = .r(t). (2.4.3)

iv) The periodic solution, .r(t), has a Fourier series representation given by the expres

sion

=
u. os[(2k + 1)Qt], (2.4.4)

where the angular frequency c2 = 2-/T.

Note that not all harmonics appear in Eq. (2.4.4), i.e., even harmonics, 2Q, are not

present. This result is a consequence of the fact that Eq. (2.4.1) is an odd-parity differential

equation and it has been shown by Mickens [23] that for this situation only odd harmonics

can appear in the Fourier series representation.

2.5 Important Trigonometric Relations

The calculations of the next chapter make extensive use of trigonometric relations involving

products of sine and cosine functions. Listed below are those formulas essential to our work

[20]:

sin(O1 ± 6L) = Sill 0 (OS 02 ± COS 01 Sfl 02

cos(0i ± 02) = cos COS 02 + sin 01 sin 09
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sin 0 (OK 02 =

(OK Oj Kill 02

COK 0 (OK 02 =

Kill 0 Kill 02 =

[sin(0 + 02)

[siii(Oi + 92)

[cos(0i +02)

[cos(0j
— 02)

d
cos 0 = — Slil 0

d.
sin 0 = cos 0

fcosodo = sin0

f sin 0 dO = — cos 0

+ sin(0i
— 02)]

— sin(Oj
— 02)]

+ cOS(Oi — 02)]

— cos(01 + 02)]

siii2 0
= (4) (1— ()K20)

cos2 0 (4) (1 + (OK 20)

(Kill 0)
= (4) (3 siii 0 — Kill 30)

(cos 0)
= (4) (3 cos 0 + cos 30)

(11

(1

(1

(‘1
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2.6 Second-Order ODE’s: Constant Coefficients

One of the approximation methods we use gives rise to second-order ODE’s having con

stant coefficients and a periodic inhomogeneous term. These equations take the form

/j + 21 = A s(21 + 1 )c21, (2.6.1)

where (S 12, A, A2, . . , A,) are given constants. The general solution can be written [20,

21, 22]

y(t) y()(j) + y’(I), (2.6.2)

where y(”)(t) is the homogeneous solution

= C1 (os(c2!) + C2 sii(c2t), (2.6.3)

and the C1 and C2 are arbitrary constants, and the particular solution takes the form [20, 22]

= D11 (os(ct) + D121 sin( 2f) + D cos(2k + 1)Qt. (2.6.4)

The constants (D11,D12.D1,D9. . . . , D1,) may be determined by substitution of y(’3)(t)

into the left-side of Eq. (2.6.1) and setting to zero the coefficients of the various linearly

independent trigonometric terms. However, before carrying out this procedure, several

restrictions and requirements should be noted:

i) For the IC’s, y(O) = A and ‘(0) = 0, y(t) must be an even function of t, see

Section 2.4. This implies that, apriori, C2 in Eq. (2.6.3), and D11, in Eq. (2.6.4),

must each be zero.

ii) Under the result in i), the homogeneous and particular solutions now become

C1 cos(Slt), (2.6.5)
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“ (I) I)i h(c21) + i). (()X(2L i i)c21. (2.6.6)

However, the first term in y(’)(/) is not periodic; it is an oscillatory function having

an amplitude that increases with I. Such an expression is called a secular term. Now

‘I2 is given by the expression [20, 22]

D12 = (2.6.7)

and it follows that the only way to have a periodic solution for y(t) is to have A1 = 0.

In the calculations to follow in Chapter 3, the coefficient A1 will depend on the IC,

y(0) = A, and an unknown angular frequency Q, i.e.,

A1 = A1(A,Q). (2.6.8)

The requirement of no secular terms gives

A1 (A, 2) = 0, (2.6.9)

and the solution of this equation will give Q as a function of A.

If the particular solution

y’1(t)
=

Dk cos(2k + 1)Qt (2.6.10)

is substituted into

= Akcos(2k+ 1)Qt,

we obtain

Dk[(2k + 1)2
— 1] COS(2k + 1)Qt

=

A. (S(2k + 1)f
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and

= 2[l _(2/+1)2j’
1.2, ii. (2.6.11)

Therefore, ij(/) is

!J(1)
= ,(II) (I) + ‘)(t) =

Ci
c22{i—(2k+i)2]’

(2.6.12)

Applying the initial condition, y(O) = A, gives

A=01
+c2[l (2k+1)2]’

and if this is solved for (, we find

= A
—

Q2{1 — (2k + 1)2]’
(2.6.13)

Thus, in this manner, the complete, periodic solution to the linear, second-order, inhomo

geneous ODE given by Eq. (2.6.1) is constructed.

2.7 Phase-Space

The second-order ODE

=0, (2.7.1)

can be rewritten as two first-order coupled ODE’s

dx dy
= y, —g(x). (2.7.2)

In this form it is useful to introduce two-dimensional space, (‘x, g), and study the prop

erties of the solutions to Eq. (2.7.1) in this 2-dim geometry. (See Mickens [20] and Liu [22]

for full discussions of this topic.)
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The trajectories in the (i, /1) “phase-space” are denoted by i = y(.i) and are determined

by solutions to a first-order ODE. This equation can be derived by noting that ify =

then

(2.7.3)
(Ii; (1.1 (li

and
(ly — (Jy/(Jt — g(.r)
(1:1’ (LI/dI ‘1]

The result in Eq. (2.7.3) is a consequence of the implicit differentiation rule; see Sec

tion 2.3, in [24]. Equation (2.7.4) is called the trajectoly equation for the two first-order

ODE’s given by Eq. (2.7.2).

Constant solutions to Eqs. (2.7.2) are called fixed-points and are the (real) simultaneous

solutions to the equations

0, g([i) 0. (2.7.5)

Note that for Eq. (2.7.1), all fixed-points have i] = 0.

Inspection of Eq. (2.7.4) shows that it is separable, i.e., it can be written as

y dy + g(:I;)d.T = 0.

If this equation is integrated using the IC’s

= A, y(O) = 0, (2.7.6)

then the following expression, called the first-integral, is found

+ V() V(A), (2.7.7)

where

V()
= f g(z)dz. (2.7.8)
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In physics and engineering, V(.r) is called the potential function [25], and H(.r, y), defined

as

JI(.i. !I) = + V(.r) = constant, (2.7.9)

is called the energy function of the system modeled by the differential equation given in

Eq. (2.7.1).

A direct consequence of Eq. (2.7.9) is that for every allowable constant C, the solutions

to

H(:r, y) = C,

correspond to a trajectory curve in the (:z, y) phase-space [20, 21, 25].

The first-integral, H(:i. g), may be invariant under a transformation of the phase-space

coordinates i and y. If such a transformation exists, then the system is said to have a

symmetry. Examples of elementary symmetries include the following three:

(i) .r —* —:r, y —*

This corresponds to reflection in the y-axis.

(ii) :r —÷ :r, tj —p —y

This is reflection through the -axis.

(iii) i —* —x, y —÷ —y

This corresponds to inversion or reflection through the origin.

The above three symmetries are usually denoted, respectively, by the symbols S1, S2, and

S3 [20].

If g(—x) —g(x), i.e., Eq. (2.7.1) is of odd-parity, then

dy — g(i)
dr

is invariant under all three transformations.
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There are two curves in the (i. ij) phase-space that have special significance; they are

the i- and ij-nullclines, and are denoted, respectively, by ;tj(.i) and ll((.r). They are defined

in the following manner:

i) The .i-nullcline is a curve in the (i, y) phase-space along which (ly/da — oc, i.e.,

whenever a solution trajectory crosses this curve, the slope of the solution is un

bounded.

ii) The q-nullcline is a curve in the (i, y) phase-space along which dy/d:i = 0, i.e.,

whenever a solution trajectory crosses the y-nullcline, the slope of the solution is

zero.

Note, in general the i- and y-nullclines do not correspond to solution trajectories. Also,

these nullclines divide the phase-space into several open domains where the boundaries of

these domains are the nullclines themselves. In each open domain the “sign” of dy/d.7 is

fixed, i.e., within a given domain (ly/di is bounded and is everywhere either negative or

positive. The derivative, ciy/d:i:, can only change sign by crossing from one open domain

through a nullcline into another open domain.

Examination of Eq. (2.7.4) allows us to reach the following conclusions:

i) The i-nullclines consist of the vertical lines corresponding to the real solutions of

g(T’) = 0.

ii) The y-nullcline is the i-axis.

2.8 Basic Approximation Methodology

The next two sections discuss two methods which can be applied to TNL oscillator equa

tions to construct approximations for the periodic solutions. This section gives a general
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overview of the basic methodology and philosophy of constructing approximations to non

linear equations based on the work of Mickens [26].

Let .r be a function of some variable (which does not, at this point, have to be explicitly

indicated). Assume that i is obtained from solving a nonlinear equation

0. (2.8.1)

Further assume that to determine.’ from Eq. (2.8.1) certain restrictions must be placed on

i, i.e.,

I?: {R1 (:r), . . . I?Aj(;r)}, M> 1. (2.8.2)

An example of this type of problem is

:1 +
1

0, :r(0) A, :1(O) = 0, (2.8.3)

where

N() : +
1

and the two restrictions, in this case IC’s, are

R1(i) 40) = A, (2.8.4)

40) = 0. (2.8.5)

General strategies for constructing approximations to the solutions of the problem given

by Eqs. (2.8.1) and (2.8.2) are to proceed in one of the following two ways:

(I) The nonlinear equation, N(x) = 0, is replaced by a set of equations that can be

solved exactly.

For this case, the procedure replaces a single nonlinear equation by an infinite set of

linear, inhomogeneous exactly solvable equations such that they are collectively solved by
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means of an iteration process. Symbolically, this corresponds to

AT(i:) = 0
R: (ij) i? (i),. . . , R (“)}

(2.8.6)

Lik I F1,. (.r)

= 0,1,2
specified,

I?: {R1 (.Ih. + . R2(.IA. -i ) I? )}

where Li = 0 is a linear equation. Note that each i,, must satisfy the M-restrictions

imposed on the solutions to N(:i) = 0. However, it may be further required to impose

additional restrictions on the solutions :i..

To illustrate this last point, consider the TNL oscillator equation given by Eq. (2.8.3).

It can be demonstrated that all its solutions are periodic for any set of IC’s. However, the

solutions to the iteration process may have both periodic and nonperiodic behaviors, and

therefore some constraint must be placed on the calculated solutions such that they are

restricted to only the periodic solutions.

The input or generating solution, ;i, is the basis upon which the iteration method is

founded. Generally, it is selected to be the simplest function satisfying the M-restrictions

of the original nonlinear problem, N(:r) = 0.

(II) A second strategy for obtaining approximate solutions to Eqs. (2.8.1) and (2.8.2) is

to assume that there exists a complete, orthogonal set of functions in which the solution x

can be expanded. (For ODE’s these functions correspond to solutions of Sturm-Liouville

problems. For full details see Chapter 6 of Mickens [20] or Chapter 12 of Ross [22].)

Denote this infinite set of functions by {Ok}, k = {0. 1. 2,. .
. }. The particular functions

selected will be determined by the M-restrictions. Now assume that the exact solution to
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N(.r) = (1 has the representation

.1 - ((/)., (2.8.7)

where the {.), / = {O, 1, 2,.. . } are constants. The L-th approximation to :i is the ex

pression

(2.8.8)
I)

where the ‘. are to be determined using some appropriate mathematical procedure. One

way to do this is to substitute Eq. (2.8.8) into Eq. (2.8.1) and carry out the required mathe

matical operations to obtain the result

= Ii(, ( (L)cbk + (higher-order-terms) 0. (2.8.9)
k I)

Since the {ç&..} are linearly independent [20, 21], it follows that

=0, k= (0,1,2,...,L), (2.8.10)

and these (L + 1) equations may be solved for the (L + 1) coefficients in Eq. (2.8.8).

Note that both strategies assume that all the required mathematical operations can be

carried out and that the calculated solutions are the ones appropriate for the original non

linear problem, N(.x) = 0.

2.9 Harmonic Balance

The method of harmonic balance is a powerful method for calculating approximations to

the periodic solutions of nonlinear oscillator differential equations. A detailed discussion

of this procedure, its applications, and its limitations is given in Chapter 4 of the book by

Mickens [4]. We present below a summary of the method of harmonic balance.
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Assume that the following ODE

.1 + q(.r) = 0, (2.9.1)

is of odd-parity, i.e.,

g(—.r) = (2.9.2)

and the IC’s are selected to be

= A, .1(0) 0. (2.9.3)

Further assume that all the solutions to Eq. (2.9.1) are periodic. The latter condition, along

with the requirement of odd-parity, implies that :i(I) has a Fourier representation of the

form

;i(i) = A71, eox(2,ii — 1 )2t, (2.9.4)
717= 1

where the coefficients and angular frequency are expected to depend on A, i.e.,

A71, AT,j(A), in = (1,2,3,...); Q = c2(A).

The N-th order method of harmonic balance approximates .r(t) by the function

XN(t) = A cos[(2m — 1)Qt]. (2.9.5)
rn=1

where the coefficients {A}, ru (1, 2, . . . , N), are approximations to {Arn}, rn =

(1, 2,. . . , N); and N is an approximation to Q.

Examination of Eq. (2.9.5) shows that there are (N + 1) unknowns: the N coefficients

and Q. These quantities are calculated in the following manner:

i) Substitute Eq. (2.9.5) into Eq. (2.9.1) and write the resulting expression as a linear

combination of cosine functions; but, only include harmonics to order (2N — 1). Carrying
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out this calculation gives

1i, (O[(2’I!1 — 1 )ci} -f- FIOH (1 (2.9.6)
7fl

where I-IOH means “higher-order harmonics,” and the H,1, are functions of all the coeffi

cients and i.e.,

Ji JJ(4(N)4(N)
AZ.J\). iii = (1,2.....N). (2.9.7)

Note that for each function q(.r), the II,,, are defined as unique functions of the coefficients

and the N-th approximation to the angular frequency, c2.

ii) Since the cosine functions are linearly independent [4], the results in Eq. (2.9.6)

imply that the coefficients must be zero, i.e.,

H,,,(A. 4Z. (2) = 0, ii, = (1,2.3 T) (2.9.8)

iii) Solve the N functional relations, given by Eq. (2.9.8) for (Af”, A,. . . , A, )
in terms of the coefficient A1’, i.e.,

= v (A), (A), rn = (2,3 N). (2.9.9)

iv) Express A in terms of the initial condition by using the requirement

XN(0) = A A+
rn=1

and from this it follows that

A(N)
= A — A(A). (2.9.10)

rn=2

This equation can be solved for A” in terms of A.

Note that the IC, ±N(0) 0, is automatically satisfied by .zN(t); see Eq. (2.9.5).

Finally, the substitution of Eq. (2.9.10) into Eq. (2.9.9), and the placement of these

relations into Eq. (2.9.5), gives the N-th harmonic balance approximation to the periodic

solution of Eq. (2.9.1)
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2.10 Iteration

The iteration method for TNL oscillator differential equations was created by Mickens

[II, 131 to analyze this class of equations for the case where the nonlinear term contains

the dependent variable raised to a fractional power. However, the general technique can

be applied to both standard nonlinear and TNL oscillator equations and many papers have

been written on its applications to such differential equations [14, 20, 30, 31].

As in the previous section, we assume that the following ODE

.1 —f— q(:i) = 0, ;i(0) = A, .(0) = 0, (2.10.1)

is of odd-parity and all solutions are periodic. Let us rewrite Eq. (2.10.1) to the form

:1 + c22:i = c22i.
— (2.10.2)

where 2 is a real parameter. The iteration method assumes that suitable approximations to

the periodic solutions for Eq. (2.10.1) may be determined by solving the following recursive

relations

+ c:Ekl — g(xk), (2.10.3)

where the generating solution is

x0(t) = Acos(Qot), (2.10.4)

and for each value of k, we have the IC’s

= A, .±k(0) = 0. (2.10.5)

The angular frequency Q is unknown, but may be determined by a calculation at the

(k + 1) level. Since the homogeneous equation

+ = 0, (2.10.6)



24

has the solution

(Ii)
A +1 (1) = c ./), ‘j = arbitrary constant, (2.10.7)

is determined by the requirement that terms, on the right-side of Eq. (2.10.3), which can

give rise to secular terms, be eliminated from the particular solution, •‘•‘i (t).

The general solution can be written as

(t) = :i (I) + (2.10.8)

and the constant calculated from the IC, :I:h.+1 (0) A.

For the next level of calculation, k + 2, the Q1, is replaced by and the above

procedure is repeated. At each level the has a definite functional dependency on A, but

this dependency changes as k varies.



CHAPTER3
CALCULATIONS

This chapter presents all of my work on the cube-root oscillator differential equation

: + = 0, :i(0) = A. .1(0) = 0.

We first provide two independent proofs that all solutions to this differential equation are

periodic. Next, we calculate an exact value for the angular frequency using the properties

of an integral related to the beta function. The next two sections give the details of the

calculations leading to several expressions for approximations of the periodic solutions for

the cube-root oscillator. The procedures used to determine these approximate solutions are

based on the methods of harmonic balance and iteration.

3.1 Proofs of Periodicity

The cube-root equation

+x’3=0; x(O)=A, ±(0)=0, (3.1.9)

has the following representation in terms of two first-order, coupled ODE’s

=
= _1/3; (0) = A, y(O) = 0. (3.1.10)

The fixed-point or constant solution is (, ) = (0, 0), and the first-order ODE for the

trajectories, y = y(), in the (.r, g) phase-space is

(3.1.11)
d.c y

25
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This equation is separable and can be integrated to produce the following result for the

first-integral

+ () /3

= () A3. (3.1.12)

As Eq. (3.1.12) represents a simple, closed curve for any value of L4 > 0 [4, 27], and since

closed curves in the (i, !J) phase-space correspond to periodic solutions, the result given

by this equation implies that all the solutions of the cube-root TNL oscillator differential

equations are periodic.

We can also produce a second proof of the periodicity of the solutions. To do this, note

that the i- and ij-nullclines, for Eq. (3.1.11), are

= : the .i;-axis: (3.1.13)

0: they-axis. (3.1.14)
(Li;

Inspection of Eq. (3.1 .11) shows that the ODE is invariant under the following three trans

formation:

Si : :1; —÷ —hr, y —*

32.x—*x, iJ___-*_y,

S3:x—*—i, y—*—-y.

where S1 is reflection in the y-axis, 82 is reflection in the x-axis, and S3 is inversion through

the origin.

The geometric proof that the cube-root differential equation has all periodic solutions

proceeds as follows; see Figure 3.1:

i) Part (a) of Figure 3.1 presents the two null-dines, indicated by the vertical-dashed

and horizontal-dashed lines. The .r-nullcline corresponds to the :i-axis and the ii-
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A 1

() (-) Ij

III

(—) (+)

(a) (b)

r2

3

(d) (c)

7’ ‘7
2//

3

(e)

Figure 3.1: A geometric proof of periodicity for the cube-root ODE.

nulicline is the y-axis. The (±) notation indicates the sign of dy/dr in each of the

four domains into which the x- and y-nullclines divide the (.r. y) phase plane.

ii) Select an arbitrary point in the (i. y) plane. For convenience, we take this point, P1,

to lie on the positive y-axis.

iii) Through P1 draw the portion of the trajectory that lies in the first quadrant. Note that

at P1, the slope of this curve is zero. The slope of the curve in the first quadrant is

negative until it contacts the i-axis and at this point, P2, the slope is “minus infinity”

or vertical to the i-axis. These actions produce the curve shown in Figure 3.1(c).

iv) Now apply the symmetry transformation 2 and obtain the curve —1 2 3 indicated in
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Figure 3.1(d).

v) The application of S1 now gives the closed curve —1 2 3 4 1. However a closed

curve implies the corresponding trajectory is a periodic solution. Therefore since the

point, Pi, is arbitrary, it follows that all solutions must be periodic [26, 27].

The above geometrical analysis has been used extensively by Mickens in his work on

nonlinear oscillator differential equations [4, 10, 11, 12, 13, 14, 15, 23, 28].

In summary, two different methods have been used to prove that all solutions to the

cube-root TNL oscillator ODE are periodic. We now calculate the exact value of the period

for this oscillator.

3.2 Exact Period of the Cube-Root Oscillator

From Eq. (3.1.12), the first-integral for the cube-root oscillator, we have

= () [A41 — (3.2.1)

and from this it follows that

y = [A4!3 4/3] 1/2
(3.2.2)

Now in the (x, y) plane, the motion along a trajectory from x A to .x = 0 corresponds to

that portion of the trajectory in the fourth quadrant and for this situation y = d,x/dt < 0;

see Figure 3.1(e). Therefore

dt / [A — x4/3]
1/2

and

=

— () [A4!3 .4/3jh/2 (3.2.3)
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The existence of the three symmetry transformations implies that the time for the oscillator
to go from .r A to .r = () is T/1, where T is the period of the oscillation. Therefore,
integrating the expression in Eq. (3.2.3) gives

(1

[\ D

(//
— V) J —

and

(3.2.4)

To obtain this last expression, we used the fact that

—

f0(. .

. )4 /(. .
. )d.r.

Let us now make the transformation of variable

= Au (3.2.5)

in the integral given by Eq. (3.2.4); carrying out this change gives

A d’u,

X = 0 U = 0,

= A =‘ u = 1,

[A”3
— 4/3]1/2

= A2/3[1 —

and
pA piI

___________

— 41/3 I (U

(3 2 6)Jo [44/3 4/3]1/2 — Jo [1 — ,4/3}1/2

Now let

W U
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Therefore,

13N (111’
(111

= 1\,) w1/’

= 0 = 0,

ii = 1 := j7 1,

and

/ [1 i/] 1/2
= () / —

I/2, (3.2.7)

Combining the results in Eqs. (3.2.4), (3.2.5) and (3.2.7) gives the expression

T(A) = A3f ‘w /1(1
— w) ‘2(J’W (3.2.8)

The beta function, I3(p, (1), is defined as [20]

13(7), q)
jr

1(1 — dw.

It can also be written in terms of the gamma function, F(z), by means of the formula [20]

F (p) F (q)
B(p, q)

= F(p + q)

Comparison of the integral, in Eq. (3.2.8), with the integral definition of the beta function,

gives

1 3
or q=,

1 1
p—l=--- or p=.

Therefore, the period of the cube-root TNt oscillator is

T(A) = A’13B(, = (A1/:3) F )((4). (3.2.9)
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From the Abramowitz and Stegun [29], we find the following values for the gamma func

ti ons

F = 1.77215 385()9.

F (—) 1.22511 67021...,

F () = () F () () (3.62560 99082 ..),

and therefore T(A) is

T(A) = (A1’) (i) (5.86966-H26)A1. (3.2.10)

The corresponding angular frequency, Q(A), is

=

___

= 1.O7515
(3.2.11)

Note that we have written the period, T(A), and the angular frequency, Q(A) to indicate

that they both depend on the value of .r at f = 0, i.e., i(0) A.

3.3 Harmonic Balance

The method of harmonic balance can be applied to the cube-root oscillator differential

equation

+ = 0. .T(0) = A, ±(0) = 0. (3.3.1)

The first-order, direct approximation includes only a single harmonic and takes the form

3DRB(t) = ACOS(c21)JJBt) = AcosO, (3.3.2)

where

0 1)1jJt. (3.3.3)
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Note that ‘I)II,(t) satisfies the IC’s and S21)11fl must be calculated. (We use “DHB” to

indicate that this is a direct harmonic balance procedure.) Substitution of :ijmj(t) into

Eq. (3.3.1) gives

—(c2,, A o 0) + (4 (O 0)1/3 0 (334)

It has been shown by Mickens and Wilkins [20] that

(us 0)1/3 (1 [(os 0 —

+
(o0) +...] (3.3.5)

where

Ui = 1.1595952669639... . (3.3.6)

Using this result, Eq. (3.3.4) becomes

[—c2A + oiA1](050 + HOH 0, (3.3.7)

and setting the coefficient of cos 0 to zero gives

flhiB4+ — 0

or

/3i 1.076845
D11B

A1/3 A’/3
(3.3.8)

As a consequence of Eqs. (3.3.2) and (3.3.8), the first-order, direct harmonic balance ap

proximation to the periodic solution of the TNL cube-root oscillator equation is

XDHB(t) = Acos [() ]. (3.3.9)

A second first-order harmonic balance approximation to the periodic solution can be
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calculated by eliminating the cube-root term in Eq. (3.3.1), i.e.,

.1 + /3
= 0

()3
=

(..)3 + i = 0. (3.3.10)

If we denote the first-order approximation by

J;/j/3(t) = A (OS
(3.3.11)

L. — 11/3

then substitution of these expressions into Eq. (3.3.10) gives

[_
(c3) Acos] +Acos 0. (3.3.12)

Using

(cos)3 () COSO + () eos3,

Eq. (3.3.12) becomes

[_ () (Q)°A + A] cosO + HOH 0. (3.3.13)

Setting the coefficient of cos U to zero and solving for the angular frequency gives

()
1/6

1.049115
(3.3.14)

Therefore, the corresponding harmonic balance first-order solution is

1/6

a(t) = Acos
[(i)

(3.3.15)

The cube-root equation, in the form presented by Eq. (3.3.10), can be used to calculate

a second-order harmonic balance approximation to its periodic solution. To do this, write
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this approximation to the solution as

A1 co 0 + A2 (O
(3.3.16)

= St.

If a new variable, z, is introduced, i.e.,

A1 =

then .i(1) becomes

= A (cob 0 + co 30). (3.3.17)

The task is to determine A1, z, and c2 in terms of A. To do this, note that

:i(t) = (c2(2)2A (cos 0+ 9z cos 30). (3.3.18)

Therefore, substituting Eqs. (3.3.17) and (3.3.18) into Eq. (3.3.10) gives

_(c3)2A(cos 0 + 9z (‘Os 30)1 + A1 (cos 0 + z (05 30) 0. (3.3.19)

To proceed, we must evaluate (cos 0 + 9z cos 30)1, but only retain the (05 0 and cos 30

harmonics. We now give this calculation:

(cos 0 + 9z cos 30) = (cos O) + 3(cos 0)2(92 COS 30)

+ 3(cos 0) (9z cos 30)2 + (9z cos 30)

/3”\ /27\ /243’\
= cos0

+ [() + () z+ () z3] cos30+HOH. (3.3.20)

Substituting this expression into Eq. (3.3.19) and collecting together the terms common to

cos 0 and cos 30, we find

{(cl)6A
[(p) + () z

+ (3)
z2]

- A} cos0

+ {_(c)6A [() + () z
+ (-) z3] - zA } (‘0S30

+HOHc0. (3.3.21)
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Setting, respectively, the coefficients of os 9 and (os 3(9 to zero gives the two expressions

(c) [() ± () z+ () =1. (3.3.22)

1 97 p187(4
[(i) + () z

+ () z. (3.3.23)

A single equation for z can be derived by dividing Eqs. (3.3.22) by (3.3.23), and then

simplifying the resulting expression. Carrying out this calculation gives

(1701)z — (27)z2 + (51)z + 1 = 0. (3.3.24)

Since the harmonic balance procedure holds under the assumption that z must be small in

magnitude [4], we only need to see if Eq. (3.3.24) has such a root. A rough calculation

produces [4]

— = —0.019608.
\51)

while an accurate numerical solution of Eq. (3.3.24) gives

— —0.019178. (3.3.25)

Solving Eq. (3.3.22) for and using the IC

Aj(1+z) =A,

or

A1= (3.3.26)

we find

iiB

= [() +()z+() 2]

(1) = (4)1/6

(3)
q(z), (3.3.27)

where

1++ 2 1/6

g(z) =
. (3.3.28)1 + 9z + 162z2
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Comparing Eqs. (3.3.14) and (3.3.27) gives

== cj(z). (3.3.29)

If q(z) is evaluated with z from Eq. (3.3.25), then

= 1.063410
(3.3.30)

Therefore, the second-order harmonic balance solution for the cube-root TNL oscillator

equation is

:i3(l)
= (1 ) (os 0 + Z (0X30). (3.3.31)

with (1 = ç2t and given, respectively, by Eqs. (3.3.30) and (3.3.25).

3.4 Iteration

To apply an iteration procedure to the cube-root TNL equation, we must express it in the

form

= —(I). (3.4.1)

Multiplying both sides by Q2 and then adding 1 to both sides gives

+ c2 =
— Q2()3

From this expression the following iteration scheme can be formulated

+c2Xk+l =
—

xo(t

= Acns(Qot), (3.4.2)

Xk(0) = A, ±h(0) = 0; k = 1,2
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Let 0 c)/; then for I = Ii, we have

.1’ + c .i — c (1)

(—c2A o 0) — (O

= —2A •o + QA3
[(3)

COS 0 + () (O 30]

= [_ + () cA] (0s0 + () 30 (3.4.3)

To obtain a periodic solution for ,l (t), the solutions must not contain secular terms. How

ever, the secular terms may be eliminated by setting the coefficient of the co 0 term to zero

on the right-side of Eq. (3.4.3). If this is done, we obtain

—c24 [i
— () c2A2] = 0,

and solving for c2( gives

c2()
= ()

1/6 1.049115
(3.4.4)

Therefore,
1/6

= Acos [() ()]. (3.4.5)

The determination ofi1 (t) requires finding the solution to the following second-order,

linear, inhomogeneous ODE

i +
= () cos30, (3.4.6)

where 0 = Q0t. The homogeneous solution is [21]

C1 cosO, (3.4.7)

where C1 is an arbitrary constant. The particular solution is [22]

D1cos3O. (3.4.8)
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Using the fact that

IV (I) = (•OX 30. (3.4.9)

and substituting Eqs. (3.4.8) and (3.4.9) into Eq. (3.4.6), we find the result

(OS 30 + I) (OS 30
= (21) (OS 30

or

/ /c1’\ (24 /4N 11 ,/43’\

i ) 32
=

and

7
— () (OS 30. (3.4.11)

Since the general solution is

:I:i (t) = ;i:” (I) + (t) = cos 0
— () cos 0, (3.4.12)

and :11 (t) must satisfy the IC

.ri(O) = A, (3.4.13)

it follows that

ArrrC1-

or

C1
= () A,

and

= A [() (0S0
— () (OS 30] . (3.4.14)

If we stop at k = 0, then x (t) is given by Eq. (3.4.14) with

1/6

0
= () (-). (3.4.15)
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For A= l,wehave

19 + c21j2 = .i•1 — c2I ), (3.4.16)

and

.z (/) = _4[n cos 0 /3 cos 30]. (3.4.17)

95 1
(1 = c1i, (1 , /3 = , (3.4.18)

where 2 must be determined by solving Eq. (3.4.16). Substituting Eq. (3.4.17) into the

right-side of Eq. (3.4.16) and carrying out the required mathematical operations gives

•2 + c2:i2 = —Q [
— (_) (o. i3)] A cos 0 + HOH. (3.4.19)

where

li(o 3) (2
— o/3 + 2/32)a. (3.4.20)

(We have not written down the J-IOH terms since only Q1 is to be calculated, and not :I:i (t).)

The absence of secular terms in the solution for :r2(f) requires that the coefficients of the

(05 0 term be zero, i.e.,

[ — (3A2)
2/i(n, /3)] A = 0, (3.4.21)

or

1/6

H [1 ]
1/6

=

[1 ]
1/6

= 1.041424
(3.4.22)

Therefore, the evaluation of x (1), by calculating Q1 from the next level iteration is

f1(t) = A [() cos0
— () cos30],

(3.4.23)
(0 Q1t.

An iteration scheme that allows (currently) only one step of iteration was constructed

by Mickens [14]. It starts with the original cube-root equation

+ =
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and formulates the iteration scheme as

I + =
— /3

(3.4.24)

The main difficulty with this scheme is that while

(ij)
1/3 (A (OS 0)1/3 = A 1/3

(()5 0)

can be expanded into an infinite set of cosine functions [4], higher levels of iteration require

a knowledge of the Fourier series for the function

‘(0) = [(‘i (‘OS 0 + c2 (‘OS 30+ .

]1/3 (3.4.25)

where ‘l, ‘,
etc., are constants, and currently it is not known how to achieve this goal [14].

In other words, it follows that the general theorems on Fourier series [4, 19] allow us to

conclude that 1(0) has the representation

1(0) = cos 0 + (I COS 30 +... , (3.4.26)

but no general procedure is known such that the coefficients d1, d2, etc., can be calculated.

The following is a concise summary of Mickens’ calculations [14].

For k 0, the iteration equation for .x1 (i) is

+ Qii = — (3.4.27)

Using :ro(t) A cos 0, where 0 = Q0t, we find

+ Qxi Q(Acos0) — (Acos0)’3.

Now (cos 0)1/3 has the Fourier representation [3]

(cos 0)1/3 = cos(2ii + 1)0,
fl=()
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where

3’, (4)
(1>,, — --__________________

- 21/T (i + ) F (4 — ii)

and u1 has the value given in Eq. (3.3.6). Making this substitution for (co0)1/3into the

right-side of Eq. (3 .4.27). the following expression is obtained

+ c2 = (Q4 Au1) (OX 0 — (Os(2]1 + 1)0. (3.4.28)

The absence of secular terms requires the coefficient of the cos0 term to be zero, i.e.,

çA — A’3n = () (3.4.29)

or

—
— 1.076845

3 4 30°i77 4I/ ( . . )

Therefore, the function ‘I (1) satisfies the ODE

:I + c:z1 —A’3 02nI cos(2’n + 1)0
ri= 1

and the complete solution to it is [14]

(t) = /3A cos(o) + A { [(2’ri±1)2— } cos2n + 1)Q0t], (3.4.3 1)

where the constant 3 is

= 1-
ai[(2n+1)2

-

(3.4.32)
11 1

Inspection ofEq. (3.4.3 1) shows that all harmonics appear in Mickens’ calculation ofx1 (t).



CHAPTER 4
ANALYSIS AND RESEARCH EXTENSIONS

In Chapter 3, we calculated five approximations to the periodic solutions of the cube-root

TNL oscillator. Three solutions were obtained using the method of harmonic balance and

two others were derived from application of the iteration technique. To judge the accuracy

of these solutions, we use a measure based on the calculation of the percentage error for

the angular frequency. This particular analysis of the accuracy of a solution has been used

successfully by Mickens [13, 141 and other researchers [30, 31]

Let c2(Xl(.l, be the exact value of the angular frequency and let Q be the value determined

from a calculation. The percentage-error of the calculated value is defined to be

() -
— (,‘errorinQ •10OA.

exact

4.1 Analysis

Tables 4.1 and 4.2, respectively, provide a summary of our calculations for the harmonic

balance and iteration methods. The following is an analysis of the results contained in these

two tables.

1) The calculated approximate values for the angular frequencies all have the mathe

matical structure

C
(4.1.1)

The value of C is dependent on the particular method used to determine Q(A). Since the
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period is

DHB .4 (S(Q1)1II) 1.076845 0.60%

Eq. (3.3.9) Eq. (3.3.8)

KB—I A ()X(c1i) 1 .049 1 15 1 .99%

Eq. (3.3.15) Eq. (3.3.14)

1-IB-2 (--) [(s+zo3j 1.063410 0.66%

z = —0.fl1i17$ Eq. (3.3.30)

i9 =

Eqs. (3.3.25) and (3.3.3 1)

T(A)
= () A13, (4.1.2)

it follows that T(A) increases with an increase of A. However, this increase is very slow
since the amplitude A is raised to the one-third power.

2) The direct harmonic balance (DHB) calculation gives a very accurate solution, i.e.,
0.60% error. Note that the magnitude of this error is essentially the same as that gotten
from the second-order harmonic balance procedure applied to the rationalized form of

(4.1.3)

=

(4.1.4)

Table 4.1: Harmonic Balance Solutions

I1u/c2(A)** % error in 2(A)

*The angular frequency for a given solution is given in the third column.** c2(X (A) = 1.070450515

i.e.,

This solution is denoted BH-2 in Table 4.1.
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Table 4.2: Iteration Solutions

,.(/)* A/cl(A)** % error in Q(A)

1 A os(c2(/) 1.0491 15 1.99%

Eq. (3.4.5) Eq. (3.4.4)

11 A [() os0 () os3O] 1.049115 1.99%

0 Eq. (3.4.4)

Eq._(3.4.14)

I A [() (os(9
—

(4) (DX 30] 1.041424 2.71%

(9 = Eq. (3.4.22)

Eq._(3.4.14)

*The angular frequency for a given solution is given in the third column.
**

XH(I (A) = 1.070150l5

3) The second-order harmonic balance solution, i.e., HB-2, is approximately three times

more accurate than the first-order harmonic balance solution, HB-1. This result is consis

tent with the expectation that higher order harmonic balance calculations give more accu

rate solutions than those of lower order.

4) While our harmonic balance calculations were restricted to first- and second-orders,

the inclusion of higher order harmonics is a natural consequence of using ever increasing

orders of the harmonic balance method. However, the coefficients of the higher harmonics

decrease rapidly with the order of the harmonics [4].

5) None of the calculations based on iteration methods give solutions as accurate as

those determined from the use of harmonic balance methods. In fact, the iteration method

derived solution appears to lose accuracy as the order of the calculation increases.
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4.2 Conclusion

Based on the analysis, presented in Section 4.1, the following conclusion can be reached:

Harmonic balance related methods, in general, give more accurate results in comparison

to iteration techniques.

However, the major difficulty with the harmonic balance method is that its use gives rise

to coupled, cubic algebraic equations. These equations have, in general, no exact solutions

expressible in simple closed forms.

Finally, it should be emphasized that the cube-root TNL equation, given by Eq. (4.1.3)

must be re-expressed in the rationalized form, given by Eq. (4.1.4), to obtain higher order

calculations for both the harmonic balance and iteration procedures.

4.3 Summary

We have investigated the mathematical properties of the cube-root TNL differential equa

tion. The following properties were derived:

1) There is a unique fixed-point in the (r, y) phase-space located at (i, y) = (0, 0).

2) The first-integral for this equation is

+ () x4/3
= () A43, (4.3.1)

where .x(0) = A and y(O) = ±(O) = 0.

3) The mathematical structure of the first-integral implies that all solutions are periodic.

4) From the first-order system equations

=
=

13 (4.3.2)
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it follows that the trajectory curves, ‘ = Y(.’) in the (i. !J) phase-space satisfy the

differential equation
(IV rI/3

(433)
(1.1 1]

Note that the first-integral, Eq. (4.3.1) is the solution to Eq. (4.3.3).

5) From either Eq. (4.3.1) or Eq. (4.3.3), it follows that the trajectory curves, in the

(.r. g) phase-space, are invariant under the following three transformations:

S —* —;i. g — +y.

S2 : ;1: —* +.r, y —+ —y,

S3 : :i: —* —:r, j —* —y.

6) The symmetry transformations, given in 5), allow us to again conclude that all solu

tions to the cube-root TNL equation are periodic.

Finally, we used the above stated properties and the methods of harmonic balance and

iteration to calculate first- and second-order approximations for the angular frequency and

solution to the cube-root TNL equation.

4.4 Research Extensions

The research results given in this dissertation may be extended by considering the following

important issues:

1) Is it possible to formulate the method ofharmonic balance such that the calculation of

the angular frequency and the amplitudes only involve the solution of linear algebraic

equations?

2) Are there ways of constructing iteration procedures such that a higher order iteration

calculation produces a more accurate solution than a lower order determination?
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3) Can a procedure be formulated that combines the essential features of both the har

monic balance and iteration methods, yet gives at each level of the calculation only

linear algebraic and differential equations to be solved?
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